

SCHEDA INSEGNAMENTO

A005487 - CRITTOGRAFIA

Corso di studi di riferimento	LM39 - MATEMATICA
Dipartimento di riferimento	DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE
	GIORGI"
Settore Scientifico Disciplinare	MAT/03
Crediti Formativi Universitari	9
Ore di attività frontale	LEZ:63
Ore di studio individuale	
Anno di corso	2°
Semestre	
Lingua di erogazione	Italiano
Percorso	022 - APPLICATIVO

Prerequisiti	Aver superato Geometria I e II, Algebra I e II. Si richiede,
	inoltre, la conoscenza della Teoria delle Probabilità
	discrete ed elementi di Teoria della complessità
	computazionale.
Contenuti	Il corso è dedicato l'acquisizione dei principi della crittografia
Contenuti	classica e moderna. Particolare attenzione è
	dedicata alle tecniche matematiche utilizzate in ambito
Obiettivi formativi	crittografico.
Objettivi formativi	Conoscenze e comprensione. Acquisire un'ampia conoscenza
	dei principi e degli strumenti matematici su cui si fonda la
	sicurezza delle comunicazioni segrete.
	Capacità di applicare conoscenze e comprensione.
	Saper utilizzare diverse aree della matematica, come la teoria
	dei numeri, la teoria dei gruppi e dei campi, la teoria delle
	curve ellittiche e il calcolo delle probabilità discrete per la
	costruzione dei cifrari in uso per la sicurezza delle
	comunicazioni. Essere capaci di stabilire i punti di forza e di
	debolezza circa la sicurezza e la efficienza computazionali di
	un sistema crittografico.
	Autonomia di giudizio. Saper estrapolare e interpretare i dati
	ritenuti utili a determinare giudizi autonomi riguardanti sia
	problemi strettamente collegati alle tematiche sviluppate nel
	corso, sia problemi non necessariamente di ambito
	matematico ma collegate alla sicurezza delle comunicazioni.
	Abilità comunicative. Saper comunicare problematiche e
	soluzioni inerenti ad argomenti di Crittografia a interlocutori

DEE SITE	DEL SALENTO	
Metodi didattici Modalità d'esame	specialisti e non specialisti. Capacità di apprendimento. Essere consapevoli come diverse aree della matematica concorrano nella soluzione di problemi concreti, come, ad esempio, la mediazione tra sicurezza delle comunicazioni e l'efficienza computazionale dei sistemi crittografici. Essere in grado di comprendere autonomamente testi di livello avanzato ed articoli scientifici, anche a livello di ricerca. Lezioni frontali ed esercitazioni. Gli studenti dovranno prenotarsi per sostenere l'esame finale utilizzando esclusivamente le modalità online previste dal sistema VOL.	
Programma esteso	Crittografia classica. Fondamenti. Cifrario di Cesare, cifrario mediante sostituzione, cifrario affine, cifrario di Vigenère, cifrario di Hill, cifrario mediante permutazione. Crittosistemi a flusso. Principi della crittanalisi. Crittanalisi del cifrario affine, del cifrario mediante sostituzione, del cifrario di Hill. Crittanalisi dei cifrari a flusso LFSR. Elementi della Teoria di Shannon. Segeretezza perfetta. Caratterizzazione dei cifrari perfetti. Cifrario One-time Pad. Cifrari prodotto.	
	Cifrari a blocco. Advanced Encryption Standard. Reti di sostituzione-permutazione (SPN). Crittanalisi lineare. Lemma Piling up. Approssimazione degli S-box. Attacchi lineari agli SPN. Crittanalisi differenziale. Data Encryption Standard: descrizione ed analisi. Advanced Encryption Standard: descrizione ed analisi.	
	Funzioni Hash Crittografiche. Funzioni hash e integrità dei dati. Sicurezza delle funzioni hash. Il modello dell'oracolo random: algoritmi e confronto tra i sistemi di sicurezza. Funzioni hash iterate. La costruzione di Merkle-Damgård. L'algoritmo hash sicuro (SHA-1). Codici di autenticazione dei messaggi (MAC). MAC nidificati, HMAC, CBC-MAC. MAC incondizionatamente sicuri. Famiglie hash fortemente universali. Ottimalità della probabilità di inganno.	
	Il Crittosistema RSA e la fattorizzazione degli interi. Introduzione alla crittografia a chiave pubblica. Il crittosistema RSA. Test di Primalità: Soloway-Strassen, Miller-Rabin. Radici quadrate modulo un intero. Algoritmi per la fattorizzazione: algoritmo di p-1 di Pollard, algorithmo rho di Pollard, algoritmo di Dixon sui quadrati casuali. Ulteriori attacchi al RSA: calcolo della funzione di Eulero, esponente di decifratura, attaco di Wiener all'esponente basso di cifratura.	
	Crittosistemi a chiave pubblica basati sul Problema del Logaritmo Discreto. Crittosistema di El-Gamal. Algoritmi per il calcolo del problema del logaritmo discreto: algoritmo	

_ \(\sigma_{\infty}\)	
	di Shank, algorithmo rho di Pollard per il problema del logaritmo discreto, Algoritmo di Pohlig-Hellmann. Curve ellittiche sui reali e sui campi finiti. Punti di compressione e sistemi di cifratura basati su curve ellittiche. Calcolo dei punti multipli su curve ellittiche. Sicurezza dei crittosistemi di El-Gamal. Crittosistema di Diffie-Hellmann.
	Firma digitale. Requisiti di sicurezza per uno schema di firma digitale. Firma digitale e funzioni hash. Schema di firma digitale di El-Gamal e relative varianti. Schema di firma di Schnorr. Algoritmo di firma digitale. schema di firma basato s curve ellittiche. Schemi di firma dimostrabilmente sicuri. Firme digitali one-time. Full domain hash. Firme digitali non ripudiabili. Firme Fail-stop.
Testi di riferimento	 O. Goldreich, Foundations of Cryptography, Cambridge University Press, 2001. J. Katz, Y. Lindell, Introduction to Modern Cryptography, Second Edition, Chapman & Hall/CRC, 2014 N. Koblitz, A course in Number Theory and Cryptography, Springer, 2nd edition, 1999. D. R. Stinson, Cryptography Theory and Practice, Third Edition, Chapman & Hall/CRC 2005 L. C. Washington, Elliptic curves. Number Theory and Cryptography, Chapman & Hall/Crc Florida, 2nd edition (2003) Dispense del corso

